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Abstract. Theoretical studies of broad states in the few-body systems beyond the neutron drip line have
been performed. We introduce a theoretical model which allows to incorporate the initial structure of col-
liding nuclei, reaction mechanism, few-body effects and final-state interactions in studies of broad unbound
states. The model is directly related to the sudden-removal approximation for high-energy knock-out or
break-up reactions. We apply this model to qualitative studies of some general properties of broad few-
body states including correlations for emitted fragments. The theoretical ideas are illustrated mainly using
the example of 5H. The prospect for observation of broad continuum structures corresponding to the
tetraneutron 4n is also discussed.

PACS. 21.45.+v Few-body systems – 21.60.Gx Cluster models – 25.10.+s Nuclear reactions involving
few-nucleon systems

1 Introduction

With the recent progress in experimental techniques us-
ing radioactive beams, the frontiers of nuclear physics have
been shifted to the edge of nuclear stability. For the re-
view of the latest results obtained with radioactive nuclear
beams see ref. [1]. For light nuclei, neutron and proton
drip lines have been well established and the search for
nuclear matter beyond the drip lines is continuing. Some
progress has been achieved in this direction with the dis-
covery of structures in the continuum beyond the neutron
drip line corresponding to the formation of 10He [2], 5H [3–
5], 7H [6]. It is clear that further experimental discoveries
of similar few-body systems will be made in the future.

Matter beyond the neutron drip line manifests itself as
broad structures in the few-body continuum. The widths
of such structures can in some cases be as large as several
MeV. Therefore, the properties of broad few-body struc-
tures or resonances should be reviewed and understood
from the point of view of the latest achievements in nu-
clear few-body physics.

One important definition of a state (let us call it “an
ordinary state”) is that the state properties do not de-
pend on the observation conditions (or on how the state
has been produced). For sufficiently narrow states such

a e-mail: L.Grigorenko@gsi.de

independence can be proved under the assumption that
wave functions are concentrated in regions where the in-
teractions are strong. For broad states, such independence
is no longer guaranteed because of the specific origin that
these states could have. For example, the formation of
broad states could be caused by slow motion in the inter-
nal region and tunneling between multiple channels rather
than reflection from some potential barrier. So, one should
speak about “structures in the continuum” or “continuum
response”, rather than states (in this paper, however, we
are not very strict about this terminological difference).

Available theoretical methods of treating the reso-
nances in the continuum deal with quantities like ener-
gies in the box, S-matrix for A → A scattering, poles of
S-matrix and the zeros of Jost functions. In the case of
broad states, these quantities cannot be easily related to
experimental observables and all the three ingredients of
reaction theory become important: i) initial structure, ii)
reaction mechanism, and iii) final-state interaction (FSI).

In this paper we discuss the problems which arise in the
interpretation of broad states in the traditional few-body
approach (sect. 2), and then make an attempt to combine
all the three aspects, mentioned above, in a simplified and
qualitative but methodologically consistent model. We in-
troduce into the Schrödinger equation, traditionally used
to describe the properties of few-body systems, a source
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term which takes into account a reaction mechanism, that
produces the few-body system, and explicitly depends on
the internal structure of the parent nuclei. We apply our
theoretical model to describe broad structures in the 5H
(sect. 3) and 4n (sect. 4) continuum assuming that they
have been formed in high-energy knock-out (break-up) re-
actions. In this paper we concentrate mainly on the the-
oretical issues of our model. The forthcoming paper [7]
is dedicated to a discussion of the current experimental
situation with studies of the 5H system, which is rather
complicated [3–5].

Since no bound subsystems exist in 5H (treated as
3H +n+ n) and 4n, the Hyperspherical Harmonic method
(HH) is used to solve equations of the model. The details
of the HH method, its notations relevant to the mate-
rial of the paper and necessary references are given in
appendix A. The details of the models for 5H and 4n can
be found in [8] and [9], respectively. In appendices B-D we
study the formal questions of the model we use in different
physical assumptions. The system of units h̄ = c = 1 is
used in the article.

2 Continuum structures in 5H from the
conventional point of view

Previous theoretical studies of 5H concluded that it is
particle-unstable [10–13,8,14] and has 1/2+, 5/2+ and
3/2+ spin ordering (see table 1). The predictions of peak
positions and widths from cluster model calculations [8,
14] are in reasonable agreement with each other.

Since 5H is unbound with respect to the t + n + n
decay, it should be studied with the help of the 3-body
Shrödinger equation(

Ĥ3 − ET

)
Ψ3 = 0 , (1)

where Ĥ3 is a three-body Hamiltonian and ET is the total
3-body energy. The best way to solve this equation for
5H is to use the hyperspherical harmonics method. This
method leads to the coupled set of differential equations[

d2

dρ2
− L(L + 1)

ρ2
+ 2M {ET − VKγ,Kγ(ρ)}

]
χKγ(ρ) =∑

K′γ′
2MVKγ,K′γ′(ρ)χK′γ′(ρ) , (2)

where ρ is the hyperradius, L = K + 3/2 and VKγ,K′γ′(ρ)
are the matrix elements of the sum of the pairwise poten-
tials (we refer to them as to three-body potentials) fitted
to the t-n and n-n scattering data [15,16]. More details
on this method, references and notations associated with
it can be found in appendix A.

2.1 5H as a ground state in a box

First of all, we would like to show to what extent proper
consideration of asymptotic conditions is important for

Table 1. States in 5H relative to the t+ n+ n threshold (en-
ergies and widths of the states are given in MeV).

Method 1/2+ 3/2+ 5/2+

E Γ E Γ E Γ

Shell model [10] 5.5
Shell model [11] 10.5 7.4
HH, 5-body [12] 6 ∼ 6
RGM [13] ∼ 6 > 4
HH, 3→ 3 [8] ∼ 2.7 ∼ 3 ∼ 6.6 ∼ 8 ∼ 4.8 ∼ 5
GCM [14] ∼ 3 1–4
HH, 5-body [9] ∼ 2

Fig. 1. Energy of the 5H ground state calculated in a box
versus the box size ρbox (solid curve). The same for the well-
defined 2+ state in 6He is shown by the dashed curve.

broad resonances. To do this, we solve eq. (2) with zero
boundary condition at large values of ρ. The solid line in
fig. 1 shows the ground-state energy of 5H, calculated in
such a box, as a function of the box size ρbox. The ground-
state energy monotonously decreases when the box size
increases which means that no states exist in such a cal-
culation.

For comparison, we have calculated energies of the 2+

state in 6He in a box, using exactly the same input as
in [17], and plotted them in fig. 1 as well. The energy 6He
2+ stabilizes with increasing ρbox, thus showing formation
of a narrow quasistationary state. The width of this state
(about 100 keV) can be determined from this curve with
a good precision as an uncertainty of the state position.
When ρbox comes out of a barrier, the 6He 2+ energy tends
to zero and the radius of 6He infinitely increases.

This example shows that the energy of the 5H ground
state cannot be determined in a model which does not take
boundary conditions into account. The same problem may
occur if other models, for example, five-body models with-
out three-body asymptotic conditions, are used for the 5H
study. The fact that 5H is not particle-stable is already in-
cluded in the five-body Hamiltonian and without proper
asymptotic three-cluster conditions the accuracy of the
position of the 5H “ground state” cannot be determined
to a precision better than the 5H width. Besides, another
danger of such calculations is that the ground-state energy
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Fig. 2. Panel (a): the diagonal phase shifts δKγ
Kγ for the 1/2

+

state of 5H and the lowest eigenphase. Panel (b): the internal
normalizations for 1/2+, 5/2+, and 3/2+ states obtained in the
3→ 3 calculations, ref. [8]. The energy derivative of the eigen-
phase for the 1/2+ state (see panel (a)) is in arbitrary units.

of 5H may fall on the t+n+n threshold if the model space
used infinitely increases.

2.2 Conventional way: 3 → 3 scattering

We have studied the 3 → 3 scattering for the 5H system
within the HH method in our previous work [8]. Some re-
sults from this work are shown in fig. 2. It can be seen in
this figure that some diagonal phase shifts in the channels
with the lowest quantum numbers change very rapidly.
Structures in the continuum associated with such a be-
haviour of the phases for an isolated channel should have
widths of about 600 keV. However, such behaviour of
the selected phases does not guarantee the appearance
of the three-body resonance: the behaviour of the low-
est eigenphase is smooth and its maximal value barely
exceeds 60 degrees. The eigenphase energy derivative is
sometimes used to characterize the resonances in the sys-
tems with coupled channels. It gives a broad structure
with maximum at about 2.3 MeV (fig. 2b). If we look at
the other continuum fingerprint —internal normalizations
of the scattering WFs— we can also see broad responses.
However, the maximum energy for internal normalization
for 1/2+ state is about 3.3 MeV. The internal normaliza-
tions is a simplified measure of the overlap integrals in
the transition amplitudes for various processes with three
particles in the final state [18]. They describe the energy

behaviour of the transition matrix elements for the reac-
tions qualitatively well; they can be considered as a more
realistic characteristic of the resonance. It was concluded
in [8], that the experimentally observable signature for 5H
should be quite broad.

What we want to emphasize here is that the different
types of values characterizing the continuum for 3 → 3
scattering give drastically different properties for the 5H
ground state. Below we move along this line considering
5H also in a different model.

3 5H in the model with source (MWS)

3.1 Motivation

The conventional way of studying the properties of 5H via
3 → 3 scattering would be perfectly acceptable if such re-
actions were experimentally achievable. In reality, contin-
uum structures corresponding to 5H have been observed
either in 6He break-up [3,5] or in two-neutron transfer re-
actions [4]. The 5H formed there does not live long enough
to “forget” the way it was populated. To illustrate this,
let us make the following simple estimations.

The “time of flight” for a particle with kinetic energy
Tkin moving in a potential well is

t = rint

√
M/(2Tkin) ≈ 0.11 rint T

−1/2
kin , (3)

where rint is the distance between the classical turning
points. To form a state with a well-defined internal struc-
ture, the particle should reflect many times from the bar-
rier. Let it be, for example, ten reflections. For a standard
two-body nuclear problem Tkin is 40–60 MeV and rint is
about 3–6 fm. This means that for widths larger than
1–2 MeV the number of reflections is less than ten. For
few-body resonances the flight distance is of order of the
hyperradius ρint, where ρint is the distance between the
classical turning points in a hyperspherical potential well

VKγ,Kγ(ρ) + L(L + 1)/ρ2 ,

see eq. (2). The hyperradius ρint should be larger than the
two-body radius rint and can be estimated as 5–10 fm.
On the other hand, the average depth of the three-body
potential well U0 is much smaller and the kinetic energy
Tkin = ET − U0, where ET is the resonance energy above
the threshold, is only about 3–6 MeV. These estimates
have been taken from the calculations of the 2+ state in
6He or the ground state of 6Be [17]. Therefore, in the case
of weakly bound three-body systems, the number of reflec-
tions is less than ten for widths larger than 200–500 keV.

These estimates outline a not often appreciated fact
that there is a qualitative difference between two-body
and few-body resonances. The underlying dynamics im-
plies that narrow few-body resonances correspond in re-
ality to much broader two-body states. Typical (quite
narrow) three-body resonances like the 2+ state in 6He
or the 0+ ground state in 6Be with widths of about
100 keV actually have dynamics which are typical of much
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broader (500–800 keV) two-body resonances. In particu-
lar, for structures broader that 1 MeV, which is definitely
the case of 5H, the number of reflections is only 2 to 5.
Therefore, the decay spectrum for such systems can be
influenced by the mechanism of the reaction in which this
system is formed. Below we suggest a possible way to deal
with this problem.

3.2 MWS

In the present paper, we assume that 5H is created from
6He by the sudden removal of a proton from the α-core
in a high-energy knockout or break-up reaction. In such
a process the wave function of 5H at t0 = 0 should be
the same as that of 6He, but then it should evolve accord-
ing to the three-body Hamiltonian Ĥ3 of 5H. However,
instead of solving the time-dependent problem, we intro-
duce a compact source function F Jπ

5H on the right-hand
side of the stationary Schrödinger equation (1) and solve
the inhomogeneous equation(

Ĥ3 − ET

)
Ψ

(+)
3 = F Jπ

5H (4)

for pure outgoing-wave boundary conditions. Intuitive mo-
tivations for such reformulation of the problem is that
i) only outgoing few-body waves are realized in experi-
ments and ii) reaction volume which forms the outgoing
waves of few particles has a limited size. All the formal
issues associated with this reformulation are considered in
appendix B.

For reactions, in which 5H is produced from 6He, the
source term F Jπ

5H should contain the Fourier transform of
the overlap integral between the triton wave function Ψt,
spin-isospin function of proton χp and the 6He wave func-
tion over the radius-vector r between the removed proton
and the center of mass of 5H:

F Jπ

5H ∼ Φ
1/2+

5H =
∫

dr eiqr〈Ψtχp|Ψ6He〉 . (5)

In general, this quantity should be a complicated func-
tion of the vector of the recoil momentum, transferred to
the 5H system in the proton removal process. However,
at present, we assume that the 5H recoil momentum is
negligible and the source term does not contain any other
kinematic factors. We understand that such an approach
oversimplifies the problem but, on the other hand, we do
not see any immediate necessity for a more complicated
source term since we are interested only in qualitatative
features of the problem.

The excitation spectrum of 5H formed in the break-up
channel should be proportional to the outgoing current of
three particles on a hypersphere ρ = a:

j(a) =
1
M

Im
∫

dΩρdΩκ Ψ
(+)†
3 ρ5/2 d

dρ
ρ5/2 Ψ

(+)
3

∣∣∣∣
ρ=a

.

(6)
For a sufficiently large hypershere radius, this current
should not depend on a and can be expressed via the

Fig. 3. Outgoing current of 5H Jπ = 1/2+ given by eq. (7) of
the MWS for proton removal from 6He. Calculations demon-
strate sensitivity to the source function choice: (a) different
HHs {K L S lx ly} and (b) different source sizes (normal size
and ±10%.

asymptotic amplitudes AK
γ (ET) (see appendix A for their

definition):

j(a) =
√

2ET/M
∑

Kγ |AK
γ (ET)|2 . (7)

This expression is formally equivalent to the following one:

j(a) =
1√

2M3ET

∑
Kγ

∣∣∣∑K′γ′
∫

dρχK′γ′
Kγ (κρ)fK′γ′(ρ)

∣∣∣2 ,
in which χK′γ′

Kγ (κρ) are the solutions of the homogenous
Schrödinger equation.

3.3 Outgoing current and correlation spectra

We have calculated the outgoing current of the MWS us-
ing the same Hamiltonian Ĥ3, as in the 3 → 3 scatter-
ing problem [8], and the source term represented by the
three-body wave functions of 6He from ref. [17]. We ex-
pect that the center-of-mass recoil does not influence the
source term very much. This is qualitatively confirmed by
modelling this recoil in the simple model of appendix C.

The calculated outgoing current is shown in fig. 3 by
the solid line. It resembles the missing-mass spectrum ob-
tained in [8] in a simplified model for the vertex of the
5H production. To estimate how the neglected center-of-
mass recoil changes the results of our calculations, we have
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Fig. 4. Correlation spectra for different kind of sources. Ex is
the energy between two neutrons and the energy of the triton
is 2/5(ET −Ex). The solid curve shows the results for the full
source function. The dashed, dotted, and dash-dotted curves
correspond to a single HH with {K L S lx ly} as a source.
Each spectrum is calculated for the energy ET taken at the
peak energy for the corresponding curve in fig. 3a.

modified the size of the source by making it broader or nar-
rower by 10%. The sensitivity to the source size, demon-
strated in fig. 3b, is moderate and corresponds to the sen-
sitivity found in [8].

Now we investigate how different components of the
6He wave function influence the shape of the outgoing cur-
rent and, therefore, the excitation spectra. As far as dif-
ferent components of 6He have quite different correlations,
these correlations can be seen under different experimen-
tal conditions. To do this, we use only some components
of the 6He wave function as a source (fig. 3a). The case,
where only the {K = 0, L = 0, S = 0, lx = 0, ly = 0} com-
ponent is used (dashed curve in fig. 3a), corresponds to
emission from an uncorrelated source with a size of 6He.
The uncorrelated source is a standard assumption, for ex-
ample, in particle intensity interferometry [19]. Our calcu-
lations show that the corresponding continuum structure
would be the narrowest, having a low energy peak about
1.5 MeV. If we only take the {K = 2, L = 0, S = 0, lx =
0, ly = 0} component (dotted curve), this corresponds to
the pure 0h̄ω structure of 6He. This component gives the
main contribution to the shape of the outgoing current.
The dot-dashed curve corresponds to the situation when
5H is produced only from the S = 1 component of the 6He
wave function in the knock-out reaction. The correspond-
ing excitation spectra would have a very broad continuum
response in this case.

Different components of 6He are also responsible for
different specific shapes of the correlation spectra. We
have shown in fig. 4 the correlation spectra which corre-
spond to the source functions constructed from different
hyperharmonics. The correlation spectra are calculated at
the peak energies for each of the sources (as shown in
fig. 3). To achieve a stability of the relative energy dis-
tributions, the calculations have been carried out up to

Fig. 5. The spatial densities for 1/2+ state in 5H at ET =
3 MeV obtained in the MWS with full wave function of 6He.
(a) shows the density multiplied by ρ on the XY plane. Such
density should tend to a constant (rather than as 1/ρ) at large
ρ on the XY plane. (b) shows the convergence of the density at
large hyperradii as a function of the hyperangle θρ. Small values
of the hyperangle mean that neutrons are close to each other.

hyperradius ρ ∼ 600 fm and hypermoment Kmax ∼ 26–
30. The shapes of the correlation spectra produced due
to the knock-out from different components of 6He differ
enough to be distinguished experimentally.

3.4 5H as a remnant from 6He

If we neglect for a moment the spin of the 3H core,
5H could be considered as 3H + 2n in analogy with the
neighbouring neutron halo 6He nucleus (4He + 2n), since
in both cases we have the s-wave Pauli repulsion in the
3H +n and 4He +n subsystems and attraction in p-waves.
The 3H +n interaction for the p-wave is weaker than that
for 4He +n so we can expect the states analogous to the
0+ ground state and 2+ 1.8 MeV state in 6He to be lifted
up in 5H to the continuum. Thus taking into account the
spin of 3H we can expect 1/2+ as a “ground state” and
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instead of 2+ in 6He we can expect the doublet 3/2+ and
5/2+, based on the same orbital configuration.

If 5H and 6He have a similar structure, one can expect
that the most effective population of the 5H continuum
should happen when 5H is produced from 6He, for exam-
ple, in proton knock-out reactions. We have calculated the
spatial densities of the 5H ground state in the MWS with
the full 6He wave function used as a source. These densities
are concentrated in the internal region whose size ρint can
be considered to be about 15–20 fm (see fig. 5). For “real”
(narrow) resonances such concentration is, of course, much
stronger and densities are concentrated at smaller ρint.
The shapes of the coordinate correlations somehow re-
semble those in 6He (see [17], for example). There are
“dineutron” (the neutrons are close to each other) and
small “cigar” (neutrons are sitting on the opposite sides of
the core) correlations. The “dineutron” peak is more pro-
nounced in the 5H density, than in 6He, which means that
the n-n interaction is more important in the 5H dynam-
ics. It is useful to note here that internal structures in 5H
are developed despite the fact that its lifetime corresponds
only to a few reflections within a shallow potential well.

3.5 Width and lifetime

The MWS predicts quite a broad structure for the 5H
ground state in the excitation spectra. The width of this
structure is between 2 and 4 MeV, depending on the width
of the source term. Alternatively, the width can be deter-
mined as the inverse lifetime of a system. For quasista-
tionary states the time dependence of the wave function
can be described as

Ψ (+)(ri, t) = exp[iEt− Γt/2]Ψ (+)(ri) (8)

and the width Γ can be obtained by applying Green’s
theorem to the Schrödinger equation (4). According to
[20,21], for three-body systems this procedure gives

Γ =
j(ρint)
N(ρint)

N(ρint) =
∫

dΩρdΩκ

∫ ρint

0

dρ ρ5|Ψ (+)
3 |2,

(9)
where the function Ψ

(+)
3 should be taken at the resonance

energy. Equation (9) has a simple physical meaning: for
systems obeying the exponential decay law, the width is
the ratio of the current through a hypersphere of a large
radius to the number of particles inside it.

We have calculated the 5H width in the MWS using
the definition (9) and plotted it in fig. 6 as a funciton
of ρint. At large values of ρint the width (9) behaves as
1/(const + ρint) because the contribution of Ψ (+)

3 to the
normalization grows linearly with the integration limit.
This dependence is unphysical because the width should
not depend on ρint if the latter is large enough. Therefore,
ρint should be limited by some typical size of a “nuclear
interior” which ranges from 15 to 20 fm for the case of 5H.
Figure 6 shows that after 15 fm the widths corresponding
to the sources of different size are close to each other and
the behaviour of the width curves stabilizes. The stability

Fig. 6. Width defined via lifetime by eq. (9) as a function
of the parameter ρint. Curves of different styles correspond to
those from fig. 3b.

Fig. 7. The width of 5H defined via decay time (dashed line)
and as the FWHM of the MWS calculations (solid curve) as a
function of the peak energy of the resonance. The two widths
converge at small energies.

of the results obtained means that the definition (9) is
usable even though our case is beyond the assumptions
in which this definition has been obtained. The widths
provided by the definition (9) are between 0.7 and 1.3 MeV
which is lower than the widths of the excitation functions
from fig. 3b calculated in the same model.

The difference between the different definitions of the
width as a function of the peak energy of the resonance
is illustrated in fig. 7. In these calculations the binding
of 5H was artificially increased by including an attractive
three-body potential,

VKγ,K′γ′(ρ) = δKγ,K′γ′V 0
3 /[1 + (ρ/ρ0)3] , (10)

into Ĥ3. At ET < 0.5 MeV, the two definitions predict
the same width. Let us note that ET ∼ 0.5 MeV cor-
responds well to the simple estimates made on the basis
of a time of flight of a slow particle in a shallow three-
body potential well given by eq. (3). So, we can expect
that the resonance in 5H can become “normal” only below
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Fig. 8. Three-body diagonal potentials VKγ,Kγ(ρ) for K = 0
(solid curve) and K = 2 (dashed curve). The diagonalized po-
tential is given by the dotted curve.

ET = 0.4–0.6 MeV. However, theoretical calculations lead
to a much larger energy, ET, which is of the order of 3
MeV. For this energy, the width of 5H as a FWHM of
the MWS calculations is about four times larger than the
width obtained via the lifetime.

3.6 Discussion

3.6.1 5H as a “multichannel” resonance

Usually, resonances are formed because a time is needed
for a system to tunnel through some potential barrier.
About 30 years ago the possible existence of another type
of resonances was suggested in ref. [22]. These resonances
arise in a multichannel problem where transitions between
numerous channels can generate a significant time delay
in the decay of a system. It was shown in ref. [22] that
such multichannel resonances (or resonances of the second
kind) are characterized by some long-range “interaction”
which makes their properties significantly different from
those of “normal”, or short-ranged, resonances.

5H is a good example of a resonance of the second kind.
Its diagonal three-body hyperradial potentials VKγ,K′γ′(ρ)
are repulsive in all channels. In the K = 2, L = 0,
lx = ly = 0 channel, this repulsion is minimal, but this
channel on its own allows formation of continuum struc-
tures only at energies larger than 7 MeV. Only interactions
with other channels provide sufficient enhancement in the
low-energy spectrum, which is qualitatively illustrated by
the diagonalized potential in fig. 8. It has a shallow broad
pocket with the bottom at 1.2 MeV, making the excitation
spectrum with peak at about 3 MeV possible. From this
point of view, 5H is similar to the 1− continuum of 6He,
for which a more detailed discussion of this phenomenon
can be found in [18].

3.6.2 5H waves in “shallow water”

The broad and shallow diagonalized potential, which
makes the formation of the multichannel resonance 5H

Fig. 9. Continuum properties for two-body s-wave scattering
for repulsive square potential V0 = 1 MeV, r0 = 15 fm. The
radius for the internal normalization is 7 fm.

possible, has such a tiny barrier that the fact that 5H does
not immediately decay looks at first sight surprising. Let
us note, however, that sharp resonance-like structures in
the continuum can be formed even without any barriers.
Moreover, they can be formed if only repulsive potentials
are present in the system.

This point is well illustrated in the classical textbook of
Flügge [23]. Let us consider the two-body s-wave scatter-
ing on a repulsive square barrier potential V (r) = V0 for
r < r0 and V (r) = 0 for r > r0, which is very weak (V0 ∼
1 MeV), but very broad (r0 ∼ 15 fm). The phase shift for
such a scattering passes −90 degrees at about 1.7 MeV
(see fig. 9), but this produces only a minor enhancement
in the scattering cross-section because the “shadowing” ef-
fect of the broad repulsive potential at low energies is enor-
mous compared to the resonance-like structure. However,
the resonance-like narrow peak is clearly seen in the inter-
nal normalization of the wave function and since it is the
internal normalizations that generate energy dependence
of matrix elements of different processes, this peak must
be perfectly observable if populated in some reactions.

From a formal point of view, the resonance-like
structure (or the anomaly in the continuum) is connected
with interference effect. The waves, reflected from the
origin and from the front surface of the flat part of the
repulsive potential (“potential shelf”), strongly iterfere
when an integer number of half-waves is present inside the
potential shelf. Qualitatively, the abnormal continuum
behaviour can be associated with the slow motion of
a particle above the potential shelf which creates the
concentration of the wave function in the internal region.
Such a phenomenon drastically differs from the case
of ordinary resonances. For them, internal motion is
much more rapid than the external one and the wave
function is concentrated in the internal region due to
multiple reflections from the barrier. In some sense, the
concentration of the wave function above the shelf looks
like waves rising high in shallow water.

The two-body case, considered above, has a relevance
to the 5H problem. In a single-channel approximation, the
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Fig. 10. Continuum properties for potentials (shown in the
inset), imitating the diagonalized hyperspherical potential of
fig. 8. The maximal hyperradius for the internal normalization
is 15 fm. The potentials corresponding to the curves of the
same style are shown in the inset. The dotted curve shows the
diagonalized potential from fig. 8 for comparison.

effective hyperradial potential for 5H looks very similar to
the broad repulsive shelf, although it has a small attractive
pocket (see fig. 8). The internal normalization obtained
in the single-channel calculations with a potential, which
behaves as hyperspherical centrifugal barrier with K = 0
but has a broad constant shelf (see inset in fig. 10), is very
similar to those obtained in exact three-body calculations
(see fig. 2b). However, in order to get a peak at 3.5 MeV in
the “shallow water” approximation, a stronger attraction
is required and the potential shelf should be deeper than
the real diagonalized three-body potential. This means
that the “shallow water” effect does not entirely govern
the behaviour of the 5H continuum, the multichannel as-
pects also being important.

4 Perspectives of observation of the
tetraneutron

4.1 Current situation

The search for the tetraneutron 4n has been unsuccessful
for the last 40 years. Very low upper limits on the cross-
section of the bound tetraneutron production have been
obtained for the pion double charge exchange 4He(π−, π+)
[24,25] and in a number of transfer reactions [26,27].
The missing-mass spectra of the 4n particle have also
been studied in order to find a deviation from the phase
volume behaviour. In some experiments a deviation was
found [24], while in others the missing-mass spectrum had
exactly the phase volume character [26]. A very strong ar-
gument against the existence of the bound 4n is the fact
that 5H is unbound. However, recent possible detection of
multineutron clusters in the fragmentation of 14Be on the
carbon target [28] has attracted attention to the tetraneu-
tron problem again.

Theoretically the nonexistence of the bound 4n has
been confirmed many times [29–33]. The most recent
work [33], in which the 4n problem has been studied in
the Green’s Functions Monte Carlo method with the best
available NN and NNN interactions, states that modern
nuclear Hamiltonians cannot tolerate a bound tetraneu-
tron, but hints that a very broad-resonance 4n state may
exist at 2 MeV. This state has been obtained by the ex-
trapolation of the 4n energy calculated in an external po-
tential well.

Searches for resonances in the 4n continuum, based on
the theoretical treatment of the 4 → 4 scattering, have
also been performed [34–38]. Almost all of them used the
K = Kmin approximation of the HH method but only in
ref. [37] the calculations were made in the K = Kmin + 4
basis. No resonances were found when the NN potential
used did not bind the dineutron, except in ref. [38], where
complex energies with negative real, but large imaginary
parts were obtained. Proper 4n resonances were found only
for the NN potential that binds the dineutron [37]. The
only attempt to take a reaction mechanism into considera-
tion of the 4n structure has been done in [34,35], where the
importance of the four-neutron FSI for the cross-section
at different kinematic conditions was demonstrated. Since
broad-resonance structures in the continuum are of mul-
tichannel character, a large model space is required in
searches for 4n. Therefore, all the conclusions made in pre-
vious works within the K = Kmin approximation should
be considered as very preliminary.

4.2 Tetraneutron in MWS

To understand if any effect of the final-state interaction
of four neutrons in the continuum could be observable, we
study the emission of four neutrons by some source in a
knock-out or break-up reaction. We assume that 4n is cre-
ated after the sudden removal of an α-particle from 8He.
Simple model wave functions for this nucleus are available
in the COSMA model [39]. The MWS for such a process is(

Ĥ4 − ET

)
Ψ

(+)
4 = F 0+

4n , (11)

in which the wave function Ψ
(+)
4 is expanded in the hy-

perspherical basis up to Kmax = 16, and the source term
contains the Fourier transform of the overlap between the
8He and α-particle wave functions:

F 0+

4n ∼ Φ0+

4n =
∫

dr eiqr〈Ψα|Ψ8He〉 , (12)

where r is vector of the α-particle in the 8He center-of-
mass system. We consider here the COSMA model for the
8He wave function and use only K = Kmin = 2 component
in this source

Φ0+

4n (ρ,Ωρ) = J2(Ωρ) ρ2 exp
[−ρ2/(2r20)

]
(13)

because we have found that only this component produces
a noticeable response in the 4n continuum. More details
of the source term are given in appendix D.
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Fig. 11. Continuum response of the 4n system in the MWS
with a “Gaussian” source (13). Solid, dashed and dotted curves
correspond to rms hyperradius 〈ρsour〉 of the source equal to
8.9, 7.3, and 5.6 fm, respectively. Panels are calculated with
(a) no final-state interaction, (b) RT potential (the correct n-n
scattering length). All calculations are normalized to unity at
the peak.

In our calculations we used for the oscillator radius r0
the value of 2.2 fm because this value gives the correct ex-
perimental radius of 8He in the COSMA model. This value
or r0 corresponds to the rms hyperradius of the source

〈ρsour〉 =
√
n+ 9/2 r0

equal to 5.6 fm. Larger values of 〈ρsour〉 were also used in
this work to get a feeling of sensitivity to this parameter
and to imitate a non-Gaussian tail of the source function.

Figure 11a shows the continuum responses which could
be expected for sources of different sizes if no FSI was
present in the 4n system. This is a benchmark case [40]
which is mainly determined by the internal structure of the
source. To take FSI into account, we used the Reichstein
and Tang potential (RT) [41] which provides the correct
low-energy behaviour in the n-n channel. The interaction
in odd partial waves was considered to be absent (the
u = 1 case). It was shown in [33] that the net effect of this
component of the n-n interaction is the weak repulsion
which has very small effect on 4n. The response functions
obtained with Kmax = 16 have practically converged (see
fig. 12). However, they strongly depend on the source size
〈ρsour〉 (see fig. 11b). Comparing figs. 11a and b we can see
that the four-neutron FSI has a pronounced effect on the
continuum response. The FSI can shift the peak position
to quite low energy. However, in order to shift it down to

Fig. 12. Peak positions of the 4n continuum response with
RT (solid curve, 〈ρsour〉 = 5.6 fm), and Volkov V1 potentials
(dashed curve 〈ρsour〉 = 5.6 fm, dotted curve 〈ρsour〉 = 8.9 fm,
short-dashed curve 〈ρsour〉 = 15 fm). The horizontal dotted
line is the convergence energy for the exponentially extrapo-
lated solid curve. The lower limit of the plot corresponds to the
threshold energy for 4n→ 2n +2 n decay for Volkov potential.

4–5 MeV, a very large size of the source is required, which
means that either the initial nucleus should be large, or
the reaction mechanism should enhance the contribution
from large distances, or both.

So, we see that the 4n ground state cannot be inter-
preted as a real resonance, but still can be observed as
some kind of a few-body continuum response in a reac-
tion. This response should depend on the initial structure
of the nuclei and the reaction mechanism, as well as on
the 4n FSI. Our calculations also give a clue as to why no
signature of 4n has been found in the pionic double charge
exchange 4He(π−, π+). The source size in such a reaction
should be comparable to the size of the α-particle, which
would produce the 4n missing-mass spectrum with maxi-
mum at energy around 30–40 MeV.

It could be of some methodological interest to see the
results of calculations for 4n with the Volkov V1 potential.
This potential cannot be considered as realistic for calcu-
lations of the 4n system as it makes the dineutron bound
for about 0.55 MeV (which should lead to the overbinding
of the whole system). Still it is often used in calculations of
light nuclei and we can draw some qualitative conclusions
for this example. The convergences of the peak positions
of the energy distributions obtained in MWS with Volkov
potential as functions ofKmax included in the calculations,
are shown by the dashed, dotted and short-dashed lines in
fig. 12. Calculations were carried out with sources of dif-
ferent radii (even with unrealistic radius 〈ρsour〉 = 15 fm).
We also made calculations of the 4 → 4 scattering search-
ing for the energy behaviour of the eigenphases. The dot-
dashed curve in fig. 12 shows the convergence of the en-
ergy, as a function of Kmax, where the lowest eigenphase
is passing π/2.

As can be seen from fig. 12, for Kmax < 14 the
calculated energies of the resonance depend strongly on
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the particular model we consider. However, at Kmax ≥ 14,
where ET < 0.5 MeV, all calculations with the Volkov
potential converge to each other and 4n exists as an
“ordinary” nuclear state. The actual energy of this state
cannot be precisely determined in the present calculations
because of the poor convergence of the HH method in
the case of the V1 potential (for comparison, when the
RT potential is used, the convergence of the HH method
is much better, see the solid line in fig. 12). The reason
for this is the presence of the two-body 2n + 2n and
three-body 2n + n + n channels in the 4n system, the
asymptotics of which are not treated explicitly in our
HH calculations. The energy convergence of such HH
calculations is known to be poor [15,16].

The rate at which the energy ET decreases for the
Volkov potential suggests that with the increase of Kmax

the converged energy may be either close to zero or have
some negative value. However, we are pretty confident
that this value should be above the 2n + 2n threshold be-
cause quite a dramatic change of the Majorana part of
the Volkov interaction is required to make 4n bound with
respect to the 2n + 2n decay [32]. It is possible that, sim-
ilar to the case of 5H in the box of sect. 2.1, the 4n state,
obtained in our variational calculations without explicit
treatment of cluster subsystems, will fall down to the low-
est decay threshold 2n + 2n in the limit of an infinite basis.
Such a state would be located out of barriers and would
have an unrealistically large radius. We have similar con-
cerns with the use of Volkov forces (binding dineutron) for
any system with two or more open neutron decay channels.

5 Conclusion

In this paper we have performed theoretical studies of
broad states in few-body systems beyond the neutron drip
line. We found that two different definitions of the width,
i) as the width of the excitation spectrum and ii) as an
inverse lifetime, diverge for broad states. In this sense the
broad states do not possess important features which are
typical for narrow states. However, they could be perfectly
“observable” in reactions utilizing standard techniques as
low-energy continuum responses.

We consider different procedures to define broad few-
body ground-state properties and to find out at which con-
tinuum energy they converge (so that resonances can be
considered as real ones). It occurs at about ET = 0.5 MeV
both for 5H and 4n. Such energies are too low consider-
ing the realistic expectations for these nuclei. This fact is
an indication that the observed properties of these nuclei
can be strongly influenced by the observation conditions
(reaction mechanism, etc.). So far, the theoretical stud-
ies implied that these systems can be treated as narrow
states: they are described only by ground-state energy and
(sometimes) width. Under the circumstances mentioned,
this may be an oversimplification of the real situation.

To study properties of broad unbound states in the
few-body systems we introduce the MWS model, which

allows to incorporate such important ingredients as ini-
tial structure of colliding nuclei, reaction mechanism, few-
body effects and final-state interactions. The MWS is used
in this paper to explore qualitatively the sensitivity of the
systems (5H and 4n) to different aspects of the model. It
should be noted, however, that for high-energy reactions
(the population of 5H and 4n by sudden removal of a nu-
cleon or a cluster from the projectile) MWS becomes a
good quantitative approximation.

We demonstrate that there are aspects of the dynamics
for broad few-body states, which make them qualitatively
different from broad two-body states. These aspects are
slow motion in the internal region which is supplemented
by multichannel and “shallow water” effects.

Studies of the sensitivity of the 5H spectrum to re-
action mechanism predict that the “ground state” peak
may be observed at 2–3 MeV as lowest position, but may
shift to much higher energies in certain situations. It is im-
portant that there exists a definite correlation (see figs. 3
and 4) between the shape of the energy spectrum of 5H
and the momentum correlations of 5H decay products
(measured, for example, in [5]).

In this work we provide the first large-basis continuum
studies of the 4n system. These studies give an explana-
tion why no indication of 4n FSI was found in the pion
double charge exchange reactions and specify at which
circumstances the sizable 4n FSI effect should become ob-
servable.

We intend to discuss a situation with experimental
studies of the 5H system in the forthcoming paper [7],
where also a more detailed account of the momentum cor-
relations of the 5H decay products will be given.

Numerous useful discussions with people involved in the ex-
perimental search for 5H are acknowledged. We would like to
mention here L. Chulkov, M. Golovkov, B. Jonson, A. Kor-
sheninnikov, M. Meister, G. Nyman, Yu. Oganesuan, H. Simon
and G. Ter-Akopian. The authors are thankful to B. Danilin,
and N. Shulgina for discussions of theoretical aspects of the
problem. The authors acknowledge the financial support from
the Royal Swedish Academy of Science. The work was partly
supported by the RFBR grants 00-15-96590 and 02-02-16174
and partially by the EPSRC grant GR/M/82141.

Appendix A. Notation of HH method

The details of the HH method and its application to a
range of the light clusterized systems can be found in
refs. [17,18,15,16,20,21]. The details of the models for 5H
and 4n can be found in [8] and [9], respectively.

For 5H the Jacobi vectors in “T” and in “Y” systems
(see fig. 13) can be expressed in terms of the hyperradius
ρ and the hyperangle θρ:

“T”: X =
√

2 ρ sin θρ, Y =
√

5/6 ρ cos θρ ,

“Y”: X =
√

4/3 ρ sin θρ, Y =
√

5/4 ρ cos θρ .
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Fig. 13. Three-body model for 5H and four-body model for
4n. Coordinate systems as used in the article.

Analogically the Jacobi vectors in momentum space are
defined via “momentum” κ and hyperangle θκ

ET = κ2/2M, Ex = ET sin2 θκ, Ey = ET cos2 θκ ,

“T”: kx =
√
M/2Ex ky =

√
6M/5Ey ,

“Y”: kx =
√

3M/4Ex ky =
√

4M/5Ey ,

where M is a “scaling” nucleon mass. Hyperangles θρ and
θκ should be distinguished from the angle θ between Ja-
cobi vectors X and Y in the real coordinate space.

The wave function (WF) of the 3 → 3 scattering can
be written as

ΨJM
3 =

√
2
π

(2π)3

(κρ)5/2
∑
Kγ

iK
{ ∑

K′γ′
χK′γ′
Kγ (κρ)J JM

K′γ′(Ωρ)
}

×∑
MLMSMSxm3

CJM
LMLSMS

ILML

Klxly
(Ωκ) ,

where K is the generalized angular-momentum quantum
number, and the following shortcuts are used:

γ = {L, lx, ly, S, Sx} ,
Ωρ = {θρ, X̂, Ŷ } , Ωκ = {θκ, k̂x, k̂y} .

The hyperspherical functions depending on 5 angles and
spin variables are defined as

J JM
KLSSxlxly (Ωρ) =

[ILML

Klxly
(Ωρ) ⊗XSSx

]
JM

,

where XSSx
is the coupled spin function of two neutrons

Sx and a core S3 = 1/2,

XSSxMS
=

[
[χS1 ⊗ χS2 ]Sx

⊗ χS3

]
SMs

,

where χSi
includes spins of nucleons or constituent clus-

ters and

ILML

Klxly
(Ωρ) = ψ

lxly
K (θρ)

[
Ylx(x̂) ⊗ Yly (ŷ)

]
LML

.

The hyperangular eigenfunctions ψlxly
K are proportional to

the Jacobi polynomials Pα,β
n ,

ψ
lxly
K (θi) = N

lxly
K (sin θi)lx(cos θi)lyP

lx+1/2,ly+1/2

(K−lx−ly)/2 (cos 2θi) .
(A.1)

The asymptotic behaviour of the functions χ(κρ) at large
ρ values is

χK′γ′
Kγ (κρ) ∼ δK

′γ′
Kγ H(−)

K+3/2(κρ) − SK′γ′
Kγ H(+)

K+3/2(κρ) .

Here H(∓)
K+3/2 are the Riccati-Bessel functions of half-

integer index, with asymptotic ∼ exp[∓iκρ], describing
the in and outgoing three-body spherical waves. SK′γ′

Kγ is
the S-matrix for the 3 → 3 scattering.

A WF with pure outgoing asymptotic and real energy
can be obtained only as a solution of the inhomogeneous
equation. For three particles it has the form

Ψ
JM(+)
3 = ρ−5/2 ∑

Kγ χ
(+)
Kγ (κρ)J JM

Kγ (Ωρ)J JM
Kγ (Ωκ) .

(A.2)
The radial components of this WF at large ρ values behave
as

χ
(+)
Kγ (κρ) ∼ AKSSx

Llxly
(κ)H(+)

K+3/2(κρ) , (A.3)

where the asymptotic amplitudes AKSSx

Llxly
are defined by

the nature of the source.
For four identical particles the hyperradius is defined

via single-particle coordinates as∑
i=1,4 r

2
i = ρ2 + 4r2cm . (A.4)

A WF with outgoing asymptotic has the form

Ψ
JM(+)
4 = ρ−4 ∑

Kγ χ
(+)
Kγ (κρ)J JM

Kγ (Ωρ)J JM
Kγ (Ωκ) ,

where at large ρ values χ(+)
Kγ (κρ) ∼ AK

γ H+
K+3(κρ). For

four identical particles the hyperspherical harmonics J JM
Kγ

are antisymmetrized [9]; for simplicity, we do not specify
their index γ here.

On the hyperspherical basis the variational procedure
reduces the Schrödinger equation with the inhomogeneous
term

(
ĤA − ET

)
= F for A particles to a set of coupled

ordinary differential equations:[
d2

dρ2
− L(L + 1)

ρ2
+ 2M {ET − VKγ,Kγ(ρ)}

]
χKγ(ρ)

=
∑
K′γ′

2MVKγ,K′γ′(ρ)χK′γ′(ρ) + fKγ(ρ) , (A.5)

VKγ,K′γ′(ρ)=
∫

dΩρ J †
Kγ(Ωρ)


∑

i>j

V̂ (rij)


JK′γ′(Ωρ) ,

where L = K + (3A − 6)/2. The functions fKγ(ρ) are
terms of the hyperspherical expansion of the inhomoge-
neous term F :

fKγ(ρ) = ρ(3A−4)/2

∫
dΩρ J †

Kγ(Ωρ)F (ρ,Ωρ) .
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Appendix B. Approximations required to
obtain MWS in the general case

It is methodologically important to find valid approxima-
tions to reduce a realistic reaction model to MWS. Below
we discuss these approximations and obtain expressions
for cross-sections via MWS WFs.

In the nuclear reaction A + B → F + R a few-body
continuum F (channel function ΨFR; let it be a three-body
continuum for clarity) is populated in a two-body reaction
(channel function ΨAB) and identified by means of a recoil
particle R (missing-mass experiment). The total WF can
be written as

Ψ = ΨAB + Ψ
(+)
FR .

The superscript (+) in the function Ψ
(+)
FR emphasises the

fact that in this channel there are only functions with
outgoing asymptotic. The asymptotic form of the WFs
ΨAB and Ψ

(+)
FR is explicitly clusterized:

ΨAB = ψAψBψAB , ΨFR = ψ
(+)
FRψR ,

where ψA, ψB , ψR are the internal WFs of the target,
projectile and recoil fragment. The function ψ(+)

FR combines
the WF of the few-body subsystem of interest and WF of
relative motion with recoil nucleus. Use of such factorised
WFs in the whole space is the first approximation we make
here. The system of coupled equations in the subspaces
AB and FR then reads


(
ĤAB − EAB

)
ψAB = 〈ψAψB|V̂ |ΨFR〉,(

ĤFR − EFR

)
ψ

(+)
FR = 〈ψR|V̂ |ΨAB 〉.

Here the cluster energies are already subtracted and EAB ,
EFR are the energies relative to the corresponding cluster
break-up threshold. The energy EFR in the break-up chan-
nel is directly related to the energy in the incoming chan-
nel EFR = EAB −Q, where Q is the threshold difference.
The operator V̂ is the sum of all the pairwise nucleon-
nucleon interactions in the system. The above system of
equations is reduced to the subspace FR if the few-body
break-up channel is only a perturbation for the two-body
incoming channel ( ‖ΨAB‖ � ‖Ψ (+)

FR ‖ in the internal re-
gion) (

ĤFR − EFR

)
ψ

(+)
FR(ρ, r) = F (ρ, r) , (B.1)

where the notation F (ρ, r) is used for overlap integral
〈ψR|V̂ |ΨAB〉 and ρ = {ρ,Ωρ} is a set of 6 variables of
the three-body subsystem.

We now split the WF ψ
(+)
FR(ρ, r) into two parts:

ψ
(+)
FR(ρ, r) = ψ

(+)
0 (ρ, r) + ψ

(+)
1 (ρ, r)

the first of which is found in the approximation which is
close in the spirit to the Migdal-Watson model. For that
purpose we use the auxiliary Hamiltonian Ĥ ′

FR

ĤFR = Ĥ ′
FR +∆V̂ ,

where ∆V̂ includes all the interactions between the recoil
nucleus and the few-body system. We look for ψ

(+)
0 as

solution with reduced Hamiltonian Ĥ ′
FR. As far as the

subsystems F and R are not interacting in Ĥ ′
FR, the WF

ψ
(+)
0 can be written as

ψ
(+)
0 (ρ, r) = (2πi)−1

∞∫
−∞

dε
∫

dρ ′ dr′ G(+)
ε (ρ, ρ ′)

× G
(+)
EF R−ε(r, r

′)F (ρ ′, r′) .

First, the two-body Green’s function acts on the source.
For radii r larger than the source size this operation gives

ψ
(+)
0 (ρ, r) =

m

πi

∞∫
−∞

dε
χ

(+)
k(ε)l(r)

r
Ylm(r̂)

× ∫
dρ ′ G(+)

ε (ρ, ρ ′)Flm(ρ ′, k(ε)),

where k(ε) =
√

2m(EFR − ε) and the three-body source is

Flm(ρ, k(ε)) =
∫

χkl(r)
rk

Y ∗
lm(r̂)F (ρ, r) dr. (B.2)

In the second stage the source and the three-body Green’s
function G

(+)
ε (ρ, ρ ′) are replaced by the solution of the

inhomogeneous three-body equation,

ψ
(+)
0 (ρ, r) =

m

πi

∞∫
−∞

dε ΨJM(+)
εlm (ρ )

χ
(+)
k(ε)l(r)

r
Ylm(r̂) .

Here WF Ψ
JM(+)
εlm (ρ) is the solution of the equation

(Ĥ3 − ε)ΨJM(+)
εlm (ρ ) = Flm(ρ, k(ε)) ,

which is defined in (A.2). The hyperspherical components
of this solution are marked not only by the quantum num-
bers Kγ of the three-body problem, but also by the quan-
tum numbers lm of the recoil channel. It should be noted
that in the general case the function F can be very com-
plicated. It contains the information about the reaction
mechanism, the total available energy, the angular mo-
mentum and the energy distribution in the recoil channel.

The break-up cross-section is defined by a particle’s
flux jR(a) through a sphere of a large radius a. This can
be defined using any particle. For example, for the recoil
nucleus R

jR(a) =
1
m

Im
∫
r2dΩrdρ ψ(+)†

0 (ρ, r)∇rψ
(+)
0 (ρ, r)

∣∣∣∣
r=a

.

Using the definition (A.2) and the asymptotic normaliza-
tion condition (A.3) we obtain

jR(a) =
m2

2π

EF R∫
0

dε
k(ε)
m

κ(ε)
M

∑
Kγlm

|AKγlm(ε)|2 ,

where κ(ε) =
√

2Mε. The energy integration limits are
now ranging from 0 to EFR as WFs with energies outside
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of this interval do not contribute to the outgoing wave.
The distribution of the energy between few-body subsys-
tem and the recoil particle in the WF ψ

(+)
0 (ρ, r) is thus

given by

dj
dε

=
1
π

m3/2

M1/2

√
ε(EFR − ε)

∑
Kγlm

|AKγlm(ε)|2 .

This expression gives the connection between values cal-
culated in MWS (amplitudes AKγlm(ε)) and observables
for a reaction with definite kinematical conditions.

The next step is to find the corrections to the function
ψ

(+)
0 (ρ, r) taking into account the full dynamics of the

system. The function ψ
(+)
1 (ρ, r) is given by(

ĤFR − EFR

)
ψ

(+)
1 (ρ, r) = ∆V̂ ψ

(+)
0 (ρ, r) .

The condition under which this correction is small is the
kinematic separation of the subsystems: the typical energy
in the few-body subsystem should be much less than in the
recoil channel. Then the function ψ(+)

0 (ρ, r) is strongly os-
cillating with respect to the variable r and the source for
the function ψ

(+)
1 becomes effectively weak. This is nor-

mally assumed in the Migdal-Watson approximation. The
sudden-removal approximation discussed in the following
appendices implies large momentum transfer to the recoil
and is a limiting case of the approximation given here.

Another situation in which the addition of the
function ψ

(+)
1 (ρ, r) would not change qualitatively the

observables is when the states in the few-body subsystem
are very narrow compared to the energetically allowed
region. However, in this paper we are interested in the
opposite situation.

Appendix C. Sudden removal of a proton
from 6He

To substantiate the MWS model, we are going to obtain an
expression for the source function in the approximation of
the sudden removal of a proton from 6He. We consider the
6He WF in the COSMA model approximation [17] which
makes the analytical treatment of the problem possible.
Only K = 0 and K = 2 components with S = 0 are taken
into account,

Ψ6He(X,Y) =
4√
πr3He

(
A0 +

2A2√
3r2He

(
Y 2 −X2/4

))
× exp

[−(Y 2 +X2/4)/r2He

]
(4π)−1χnn

S=0Ψα , (C.1)

where χnn
S is spin function of the valence neutrons and

AK is the amplitude of the component with hyperspher-
ical moment K. The three-body calculations show that
both amplitudes are positive and the weights of compo-
nents are about A2

0 ≈ 0.05 and A2
2 ≈ 0.77. The rms matter

radius of 6He is reproduced with experimental rms matter
radius of the α-particle rmat(α) = 1.46 and the oscillator

Fig. 14. Jacobi coordinate sets for the description of the re-
moval of a proton from 6He to form 5H.

parameter of the valence nucleons rHe = 2.73 fm [17]. The
WF is normalized for integration over d3Xd3Y . The 6He
WF approximated in this way mimics well the geometry
of the realistic three-body WF and is a reasonable ap-
proximation for observables which are not very sensitive
to the asymptotic properties of the WF. We assume that
the proton motion in the α-particle can be described by
an oscillator WF as well:

Ψα(r) =
2

π1/4r
3/2
α

exp
[
− r2

2r2α

]
1√
4π
χtp
S=0Ψt . (C.2)

The WF is normalized for integration over d3r. Here Ψt is
internal triton WF, χtp

S is a spin function of a proton and
a triton and the oscillator parameter

rα = (4/3)
√

2/3 rmat(α) = 1.59 fm

should be chosen to provide the experimental rms radius
for the proton in the α-particle.

To study the sudden removal of the proton we should
transfer the WF (C.1), (C.2) to a coordinate system,
where the proton motion is considered from the total cen-
ter of mass (fig. 14):

X = X′ , Y =
9
10

Y′ − 1
4
r′ , r =

2
5
Y′ + r′ . (C.3)

The new set of Jacobi coordinates X′ and Y′ corresponds
to the internal motion of 5H. The momentum distribution
of 5H center of mass is given by the Fourier transform of
the WF (C.1) over the coordinate r′. A projection of this
transform on the zero angular momentum in coordinate
r′ allows to find spatial configurations which populate the
ground state of 5H:

Φ
1/2+

5H (X′,Y′,q)

=
∫

dΩqY00(q̂)
∫

d3r′eiqr′〈Ψt|Ψ6He(X′,Y′, r′)〉

= (4π)−1χtnn
S=1/2Ψt

[
(A0F1(qY ′) +A2F2(qY ′))

+
2A2√
3r2He

(
64x4

(1+8x2)2Y
′2 − 1

4X
′2

)
F1(qY ′)

]
F (q)

× exp
[
−( 8x2

1+8x2Y
′2 + 1

4X
′2)/r2He

]
, (C.4)
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where x = rHe/rα and should be around 1.7 for a realistic
geometry of the α-particle. χtnn

S=1/2 is a total spin function
with two neutron coupled to S = 0. Functions F0 and F1

tend to constants at low qY ′ values and

F (q) =
4π√
π3/2r3α

64
(1 + 8x2)3/2

exp
[
− 4r2Heq

2

1 + 8x2

]
. (C.5)

In the limit of low momentum q transferred to 5H cen-
ter of mass (practical requirement is q < 50 MeV/c) this
expression has a factorised form

Φ
1/2+

5H (X′,Y′,q) = Φ
1/2+

5H (X′,Y′)F (q), (C.6)

where

Φ
1/2+

5H (X′,Y′)=(4π)−1

×χtnn
S=1/2Ψt exp

[
−

(
8x2

8x2+1Y
′2+ 1

4X
′2

)
/r2He

]
×

[(
A0+A2

√
3

1+8x2

)
+

2A2√
3r2He

(
64x4

(8x2+1)2Y
′2− 1

4X
′2

)]
. (C.7)

A transformation of such spatial configuration using the
eigenfunctions of the 5H Hamiltonian with Jπ = 1/2+

will give momentum distributions of particles in the 5H
continuum corresponding to its ground state. Technically
we realize this by solving the inhomogeneous equation (4).
It should be noted that the theoretical technique, which
we use in this paper, is a generalization of the technique
used in papers [42,43].

The components of the source function, eq. (C.7), have
a very high similarity with the components of 6He WF,
eq. (C.1), in the sense of their geometry. However, the
relative contributions of these components can be signif-
icantly affected by the reaction mechanism. Even in the
simple reaction mechanism assumed (q → 0), the relative
weight of the K = 0 component in the source function can
be 1.5–2 times larger than in the initial WF. We can see
that the assumption of eq. (5), which seem to be oversim-
plified, in reality can be quantitatively connected with a
realistic scenario of the 5H population.

Appendix D. Sudden removal of the
α-particle from 8He

In this section we are deducing the possible properties
of the source function for 4n in the example of sudden
removal of the core from the four-neutron halo nucleus
(here 8He). The 8He WF is considered in the COSMA
approximation [39] as 6He WF in the previous section:

Ψ8He =
1√
4!

det
(∏

i=1,4 Ψmj
(ri)

)
Ψα , (D.1)

where Ψα is the internal WF of the α-particle, Ψj are
single-nucleon WFs depending on coordinates ri from the

α-particle having total j = 3/2 and different mj projec-
tions:

Ψmj
(ri) =

√
8

3
√
πr5He

ri exp
[
− r2i

2r2He

] [
Y1(r̂i) ⊗ χ1/2

]
jmj

.

(D.2)
The parameter rHe, which reproduces the rms matter ra-
dius of 8He is 2.2 fm. The nucleon rms radius for this WF
is 〈r〉 =

√
5/2 rHe = 3.48 fm.

The above WF can be rewritten in the variables ρ (hy-
perradius of 4n), Ω (angles and hyperangles of 4n), and r′
(relative motion of 4n and α-particle). These variables are
defined by eq. (A.4) and the transformation of the vol-
ume element from single-particle coordinates, fig. 13, to
the 4n center-of-mass coordinates and the hyperspherical
coordinates is

d3r2d3r2d3r3d3r4 = 2 d3rcm ρ8dρdΩρ.

The momentum distribution of the 4n 0+ cm motion in the
sudden-removal approximation is obtained as the Fourier
transform of the WF (D.1) over the coordinate r′ of the α-
4n motion and projecting that to zero angular momentum.
The obtained source function is

Φ0+

4n (ρ,Ω,q)=
∫

dΩqY00(q̂)
∫

d3r′eiqr′〈Ψα|Ψ8He(ρ,Ω, r′)〉

=
(
A2ρ

2J2(Ω)F2(q)+A4ρ
4J4(Ω)F4(q)

)
exp

[
− ρ2

2r2He

]
,

where J2 is the four-neutron antisymmetrized hyperspher-
ical harmonic with K = 2, J4 is some linear combination
of two possible K = 4 HHs, and the formfactors are

F2(q) =
(π

2

)3/2 4
9πr5He

(12 − q2r2He) exp
[−q2r2He/8

]
,

F4(q) =
(π

2

)3/2 64
9πr7He

exp
[−q2r2He/8

]
.

Calculations show that only the K = 2 component of
the source function significantly populate the 4n contin-
uum. For that reason the ratio of the coefficients A2 and
A4 is not important for us.
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